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Abstract

We derive the spectral zeta function in terms of certain Dirichlet series for a variety of spherical space forms MG . Extending
results in [C. Nash, D. O’Connor, Determinants of Laplacians on lens spaces, J. Math. Phys. 36 (3) (1995) 1462–1505] the zeta-
regularized determinant of the Laplacian on MG is obtained explicitly from these formulas. In particular, our method applies to
manifolds of dimension higher than 3 and it includes the case where G arises from the dihedral group of order 2m. As a crucial
ingredient in our analysis we determine the dimension of eigenspaces of the Laplacian in form of some combinatorial quantities
for various infinite classes of manifolds from the explicit form of the generating function in [A. Ikeda, On the spectrum of a
Riemannian manifold of positive constant curvature, Osaka J. Math. 17 (1980) 75–93].
c© 2007 Elsevier B.V. All rights reserved.
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1. Introduction

This paper is a continuation of a previous work, [6] which deals with the Laplacian on Heisenberg manifolds.
Therein we gave an expression of the zeta-regularized determinant of the Laplacian for three and five dimensional
Heisenberg manifolds. In these cases, the spectral zeta function is a restriction of a certain kind of a multiple zeta
function given in the form

∞∑
n=1

∞∑
m=0

1

ns−1(n + αm + β)s
, (1.1)

or
∞∑

n=1

∞∑
m1=0

∞∑
m2=0

1

ns−2(n + αm1 + βm2 + γ )s
, (1.2)
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according to the dimension of the Heisenberg manifold (α, β, γ > 0). It is known that these functions can be continued
meromorphically to the complex plane. In order to derive the zeta-regularized determinant, explicit formulas for (1.1)
or (1.2) valid in a domain containing the value s = 0 have been applied and can be obtained via iterated use of partial
integrations for an integral expression of the above functions.

In the present paper we calculate the spectral zeta function ζMG as well as the zeta-regularized determinant of the
Laplacian for certain classes of spherical space forms and lens spaces MG := S2N+1/G. Here G ⊂ SO(2N + 2) is a
finite subgroup acting freely on S2N+1 (cf. Theorems 4.1–4.3). In particular, our analysis leads to an alternative proof
for the case of three dimensional lens spaces which was treated before in [13]. Moreover, it extends to cases of higher
dimensions and our methods also apply if G arises from the dihedral group. We show that all spectral zeta functions
appearing in this paper can be expressed as a combination of the Dirichlet series

∞∑
k=0

1
(k + α)s−d(k + β)s , α, β > 0 (1.3)

where d is related to the dimension of S2N+1/G and the group G. The possible distinct eigenvalues of the Laplacian
on spherical space forms are known. Compared to the analysis of (1.1) and (1.2), it is rather easy to handle the analytic
continuation of (1.3) at the value s = 0 and to calculate all poles and corresponding residues. For this purpose we
express (1.3) in an integral form with congruent hypergeometric functions (cf. [12]) and employ the so called Egami
interpolation method (cf. [5]).

However, to determine ζMG , we must calculate the multiplicities of all distinct eigenvalues of the Laplacian on
MG . In the paper [8], it was proved that the generating function of the multiplicities of the Laplacian on spherical
space forms is a rational function in an explicit form. By making use of this fact we determine the multiplicity of each
eigenvalue. In the case of three dimensional lens spaces, and different from our method, such multiplicities have been
derived in [13]. Therein the authors use expressions of the characters of the isometry group G (where G is a cyclic
group) acting on each eigenspace of the Laplacian on the three dimensional sphere S3.

Let P be a first order positive elliptic pseudo-differential operator defined on a closed manifold with vanishing
sub-principal symbol and periodic bicharacteristic flow (of a common period). It was proved in [3] that except a
finite number of eigenvalues, the multiplicities of the distinct eigenvalues of P are given by a polynomial of order
one less than the dimension of the manifold according to the numbering of the distinct eigenvalues. In case of the
spherical space forms treated in the present paper, geodesics are always periodic and so the bicharacteristic flow of (the
square root of) the Laplacian is periodic. Here we show that the corresponding spectral zeta function is decomposed
into a finite number of Dirichlet series (1.3) and in each series the coefficients are expressed by a polynomial (cf.
Corollaries 2.1 and 2.2). Such a decomposition enables us to calculate the zeta-regularized determinant for spherical
space forms.

As is well-known, Kronecker’s second limit formula for two dimensional tori is one of the most interesting formulas
involving zeta-regularized determinants. Many proofs of it are known (cf. [4,6,7,10] and etc.) and one typical method
is based on a functional equation of the Epstein zeta function. Such a kind of equation serves to obtain the derivative of
a function at the origin by evaluating it at a certain point. Although it is not possible to apply these ideas directly in our
approach, in [9] Matsumoto has presented a candidate of a functional equation for a class of multiple zeta functions
that includes expressions of the form (1.1). A similar functional equation can be expected to hold for the Dirichlet
series (1.3) (cf. [12]).

In Section 2 we discuss the spectral structure of the Laplacian ∆MG on general spherical space forms. There it is
shown that the eigenvalues of ∆MG are divided into a finite series and in each such series the coefficients are expressed
by a polynomial. Moreover, the spectral zeta function ζMG of MG is decomposed into a sum of a meromorphic function
ζS2N+1/|G| and an entire function hG . We express both, the function hG as well as the zeta-regularized determinant of
the Laplacian on MG in terms of the spectral data (cf. Proposition 2.1 and Corollary 2.1).

Section 3 serves to calculate the meromorphic extension of the Dirichlet series (1.3) for all d = 0, 1, 2 . . . . We
characterize its poles and calculate all residues which are polynomials in α and β (cf. Proposition 3.1). Furthermore
its values and derivatives at the point s = 0 are obtained in terms of the Hurwitz zeta function and its derivatives. Our
calculations are based on Egami’s interpolation method.

In Section 4 we combine the formulas given in Sections 2 and 3 to calculate the spectral zeta function and the
zeta-regularized determinant more explicitly for several classes of lens spaces and spherical space forms. Among our
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examples we also deal with cases of (odd) dimension higher than three and manifolds different from the lens spaces.
Appendix A at the end of this paper provides some frequently used relations between the Hurwitz zeta function and
Bernoulli polynomials as well as all the combinatorial quantities that appear in the formulas of Section 4.

Finally, in Appendix B and by using a power series expansion we explain an alternative method for expressing
the analytic continuation of the Dirichlet series (1.3) in a domain including s = 0 for d = 0 and d = 1. Different
methods will lead to different expressions of the resulting quantities. This way was employed before in the paper [17]
for calculating the zeta-regularized determinant of spheres. Therein the author gave a multiplicative form in terms of
Barne’s multiple Gamma functions {0n(s)} where n ∈ N0 (here 00(x) = x−1 and 01 coincides with the usual Gamma
function).

For d = 0 and by making use of Weierstrass’s canonical form of the Gamma function we remark, that the two
different expressions of the value H ′

α,β(0, 0) (cf. (2.13) and (2.14)) which we have obtained in the present paper
coincide. For d = 1 and by comparing two different formulas for the value H ′

α,β(−1, 0) we obtain an expression of
Barne’s G-function (=02(α)) in terms of the derivative ζ ′(−1, α) (=Hurwitz zeta function) and 0(α). Such kinds of
formula are part of more general relations between the Hurwitz zeta function and multiple Gamma functions as was
pointed out in [2].

2. Spectral zeta function of spherical space forms

Let M be a compact and connected Riemannian manifold of dimension dim M ≥ 2 (without boundary) and with
Laplace–Beltrami operator ∆M acting on smooth functions. It is well-known, that the spectrum of ∆M consists of
only eigenvalues with finite multiplicities. Let

0 = λ0 < λ1 < · · · < λn < · · ·

be the distinct eigenvalues and we denote the multiplicity of each eigenvalue by mk(M) where m0(M) = 1. The
spectral zeta function ζM of M is defined as

ζM (s) =

∞∑
k=1

mk(M)

λs
k

= Trace
(
∆

−
s
2

M

)
where Re(s) > dim M/2. As a basic property ζM can be continued as a meromorphic function to the complex plane
with only simple poles at the points s = dim M/2 − k (k ∈ N0). It is known that this is equivalent to the fact that
the heat kernel has an asymptotic expansion as t ↓ 0 through the Mellin transformation (cf. [11]). In particular, the
spectral zeta functions are holomorphic at the origin.

Throughout this paper we assume that M is a spherical space form, that is let SN for N ≥ 2 be the N -dimensional
sphere in RN+1 and fix a finite group G of fix point free isometries on SN such that M is isometric to SN /G. According
to the classification result in [14,19] the even dimensional spherical space forms are only the spheres and the real
projective spaces. In the following we deal with the odd dimensional cases and set

MG := S2N+1/G, N ∈ N.

We remark (cf. [8]), that finite fix point free subgroups of isometries on S2N+1 are contained in the special
orthogonal group SO(2N + 2) and λ = 1 is not an eigenvalue of each g 6= I in G (I = identity matrix). The
(distinct) eigenvalues of ∆S2N+1 and ∆MG coincide and they are given by:

E2N+1 = {λk := k(k + 2N ) : k = 0, 1, 2, . . .}

with multiplicities mk := mk(S2N+1) and mk(MG), respectively. It is known that

mk =
2(N + k)

(2N )!

2N−1∏
l=1

(k + l) (2.1)

(cf. Lemma 4.1) and mk(MG) coincides with the dimension of the G-invariant eigenfunctions in the eigenspace of
∆S2N+1 corresponding to λk . Therefore mk(MG) completely characterizes the spectrum of ∆MG .
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Definition 2.1. The generating function associated with the spectrum of ∆MG is defined by:

FG(z) :=

∞∑
k=0

mk(MG)zk . (2.2)

FG has a meromorphic continuation to the complex plane C. In terms of a meromorphic extension of the spectral
zeta-function ζMG the zeta-regularized determinant of ∆MG is given by :

det ∆MG := exp
{
−

∂ζMG

∂s
(0)

}
(for the definition see [7,15–17]). As a crucial observation the generating function determines the spectral zeta function
of a spherical space form completely and its meromorphic extension is rational (cf. [8]):

Theorem 2.1 (Ikeda, [8]). On the domain {z ∈ C : |z| < 1} the series (2.2) converges to the function:

FG(z) =
1

|G|

∑
g∈G

1 − z2

det(I − gz)
=

1 − z2

|G|

∑
g∈G

∏
γ∈E(g)

1
(z − γ )mγ

,

where E(g) is the set of distinct eigenvalues of g and mγ denotes the multiplicity of γ .

Let r > 1, then from (2.2) and residue calculus it follows:

mk(MG) =
1

2π
√

−1

∫
|z|=r

FG(z)

zk+1 dz −
1

|G|

∑
g∈G

∑
γ∈E(g)

Res
(

1 − z2

zk+1 det(I − gz)
, γ

)
.

Since for |z| = r > 1, k ≥ 0 and N ≥ 1∣∣∣∣ 1 − z2

zk+1 det(I − gz)

∣∣∣∣ ≤
r2

+ 1

rk+1(r − 1)2N+2 = O
(

r−2N−k−1
)

(r → ∞)

one concludes that
∫
|z|=r

FG (z)
zk+1 dz = 0 and hence the spectral zeta-function of the spherical space form MG can be

rewritten as:

Proposition 2.1. For Re(s) > 2N+1
2 there is a decomposition:

ζMG (s) =
ζS2N+1(s)

|G|
+ hG(s) (2.3)

and hG extends to an entire function on the complex plane. Moreover:

hG(s) =
1

|G|

∑
g∈G\{I }

∑
γ∈E(g)

∞∑
k=1

Ck(g, γ )

λs
k

where Ck(g, γ ) := Res
(

z2
−1

zk+1 det(I−gz)
, γ
)

. The dimension of the eigenspaces of ∆MG are:

mk(MG) =
1

|G|

∑
g∈G

∑
γ∈E(g)

Ck(g, γ ).

Proof. The decomposition (2.3) follows from our remarks above and mk = Ck(I, 1). Hence it is enough to show,
that hG has no poles. Through the Mellin transformation it is known that the integrals over the coefficients of the heat
kernel asymptotics (which are functions on the sphere determined by metric tensors and their derivatives) coincide
with the residues at the poles of the spectral zeta function. In the case of the sphere S2N+1 and the spherical space
form MG , these coefficients are constant and their integrals only differ by the factor |G| (the group order). Therefore
all poles and residues of ζMG coincide with the poles and residues of the first term of the right hand side of (2.3). As
a consequence the second term, hG , must be an entire function. �
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In the following we put for g ∈ G and γ ∈ E(g):

Jg,γ (s) :=

∞∑
k=1

Ck(g, γ )

λs
k

. (2.4)

Corollary 2.1. The zeta-regularized determinant of ∆MG is:

log det ∆MG =
1

|G|
log det ∆S2N+1 −

1
|G|

∑
g∈G\{I }

∑
γ∈E(g)

∂ Jg,γ

∂s
(0). (2.5)

In order to calculate (2.5) we have to derive an analytic continuation of Jg,γ (s) to a domain in C containing s = 0.
Let g ∈ G be of order qg > 2. Since I 6= g2

∈ G is fix point free −1 6∈ E(g). Moreover, each γ ∈ E(g) is a qg-th
root of unity. We set δ := exp(2π i/qg) and write

E(g) =
{
δ p j , δ−p j : j = 0, . . . r

}
where δ p j , δ−p j have multiplicity i j and 0 < p0 < p1 < · · · < pr < qg/2 are integers. It clearly holds that
i0 + i1 + · · · + ir = N + 1 and we can write:

z2
− 1

det(I − gz)
=

z2
− 1

r∏
j=0

(z − δ p j )i j (z − δ−p j )i j

. (2.6)

Fix an eigenvalue γ̃ ∈ E(g) with multiplicity i j . For ρ 6= γ̃ consider the Taylor expansion at γ̃ :

1

(z − ρ)k+1 =

∞∑
n=0

(−1)n
(

k + n

n

)
(γ̃ − ρ)−k−n−1 (z − γ̃ )n . (2.7)

By choosing ρ := 0 and using (2.6) there is a function F holomorphic in a neighborhood of γ̃ such that:

z2
− 1

zk+1 det(I − gz)
= F(z)

∞∑
n=0

(−1)n
(

k + n

n

)
γ̃ −k−n−1 (z − γ̃ )n−i j . (2.8)

If we write k = `qg + ν for ν = 0, . . . , qg − 1 we conclude from γ̃ qg = 1 and (2.8):

Corollary 2.2. For ν ∈ {0, . . . , qg − 1} the residue:

C`qg+ν(g, γ̃ ) = Res
(

z2
− 1

zk+1 det(I − gz)
, γ̃

)
(2.9)

is a polynomial in ` of (maximal) degree d with

d ≤

{
i j − 1 ≤ N if g 6∈ {−I, I }
2i0 − 2 ≤ 2N if g ∈ {−I, I }.

In the following we write P(g,γ̃ ,ν)(`) := C`qg+ν(g, γ̃ ). Then for all g ∈ G the function (2.4) can be decomposed
as:

Jg,γ (s) =
1

q2s
g

∞∑
`=1

P(g,γ,0)(`)

`s
(
` +

2N
qg

)s +
1

q2s
g

qg−1∑
ν=1

∞∑
`=0

P(g,γ,ν)(`)(
` +

ν
qg

)s (
` +

ν+2N
qg

)s . (2.10)

For g 6∈ {−I, I } and ν = 0, . . . , qg − 1 we set:

P(g,γ,ν)(`) =

N∑
r=0

αr (g, γ, ν)

(
` +

ν

qg

)r

(2.11)
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where αr (g, γ, ν) ∈ C are suitable coefficients. With αr (g, γ, qg) := αr (g, γ, 0) it can be checked from (2.10)
that:

Jg,γ (s) =
1

q2s
g

N∑
r=0

qg∑
ν=1

αr (g, γ, ν) H ν
qg

, ν+2N
qg

(s − r, s) . (2.12)

Here for β > α > 0 and r ∈ N0 we use the notation:

Hα,β (s1, s2) :=

∞∑
`=0

1
(` + α)s1(` + β)s2

(2.13)

which converges absolutely for Re(s1 + s2) > 1. It is known (cf. [12], Theorem 1) that the Dirichlet series (2.13) can
be continued meromorphically to all s1, s2 ∈ C. Moreover, for all r ∈ N0 the assignment

C 3 s 7→ Hα,β (s − r, s)

is holomorphic in a neighborhood of s = 0. In our notation we do not distinguish between the series (2.13) and its
meromorphic extension. By writing:

H ′
α,β(−r, 0) :=

∂

∂s
Hα,β(s − r, s)|s=0 (2.14)

we find from (2.12) and Corollary 2.1:

Proposition 2.2. For g ∈ G \ {−I, I } and γ ∈ E(g):

∂

∂s
Jg,γ (0) =

N∑
r=0

qg∑
ν=1

αr (g, γ, ν)

[
H ′

ν
qg

, ν+2N
qg

(−r, 0) − 2H ν
qg

, ν+2N
qg

(−r, 0) log qg

]
.

Moreover, with αr (g, ν) :=
∑

γ∈E(g) αr (g, γ, ν) one has:

|G| log det ∆MG = DL −

∑
g∈G\{−I,I }

N∑
r=0

qg∑
ν=1

αr (g, ν)

[
H ′

ν
qg

, ν+2N
qg

(−r, 0) − 2H ν
qg

, ν+2N
qg

(−r, 0) log qg

]
.

Here DL ∈ R is given by

DL :=

{
2 log det ∆RP2N+1 if −I ∈ G
log det ∆S2N+1 else.

Below we calculate H ′
α,β(−r, 0) and Hα,β(−r, 0) for β > α > 0 and all r ∈ N0 in terms of the Hurwitz zeta

function and its derivative at certain non-positive integers. Moreover, for several examples of special groups G we
derive a more explicit form of det ∆MG .

3. Meromorphic extension of a Dirichlet series

For β > α > 0 and Re(s1 + s2) > 1 let the Dirichlet series Hα,β(s1, s2) be defined as in (2.13). According to [12]
and for Re(s) > d where d ∈ N0 there is an integral representation:

Hα,β (s − d, s) =
1

(β − α)2s−d−1

0(2s − d)

0(s − d)0(s)

∫ β−α

0
(β − α − x)s−d−1x s−1ζ (2s − d, x + α) dx (3.1)

for 2s − d 6= 1. Here ζ(s, x) denotes the Hurwitz zeta function defined by:

ζ(s, x) :=

∞∑
n=0

1
(n + x)s .
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Let k ∈ N and Re(a) > 0. Whenever defined we use the notation:

ζ (k)
x (s, a) :=

∂kζ

∂xk (s, x)|x=a .

Moreover, we write ζ(s) := ζ(s, 1) for the usual Riemann zeta function. In (3.1) we use a decomposition called
Egami’s interpolation method (cf. [4,5]). Let p, q ∈ N, then we write

ζ (2s − d, x + α) = P p,q
α,β (s, x) + F p,q

α,β (s, x) (3.2)

where P p,q
α,β is a polynomial in the variable x

P p,q
α,β (s, x) := (x − β + α)p Ap,q

α,β(s, x) + xq B p,q
α,β (s, x). (3.3)

Here the expressions Ap,q
α,β and B p,q

α,β denote suitable functions holomorphic in a zero neighborhood of C2.

Moreover, the function F p,q
α,β should be written as:

F p,q
α,β (s, x) := xq(x − β + α)pG p,q

α,β(s, x) (3.4)

where G p,q
α,β is holomorphic in{

(s, x) ∈ C2
: s 6=

d + 1
2

, Re(x) > −α

}
.

It is easy to check that Ap,q
α,β is obtained as the Taylor polynomial in x = 0 on the right hand side of:

ζ(2s − d, x + α)

(x − β + α)p =

q−1∑
m=0

aα,β,p
m (s)xm

︸ ︷︷ ︸
=:Ap,q

α,β (s,x)

+O
{

xq}

as x → 0. The Taylor coefficients aα,β,p
m (s) for m = 0, . . . , q − 1 are given by:

aα,β,p
m (s) =

m∑
l=0

(−1)l
(

p − 1 + l

l

)
ζ

(m−l)
x (2s − d, α)

(m − l)! (α − β)p+l . (3.5)

Using Lemma A.1, (3) and considering all empty products as one, it follows whenever the right hand side is defined:

aα,β,p
m (s) = (−1)m

m∑
l=0

(
p − 1 + l

l

)
ζ (2s − d + m − l, α)

(m − l)!(α − β)p+l

m−l−1∏
j=0

(2s − d + j). (3.6)

Similarly, the function B p,q
α,β is given by the Taylor polynomial in x0 := β − α on the right hand side of:

ζ(2s − d, x + α)

xq =

p−1∑
m=0

bα,β,q
m (s)(x − x0)

m

︸ ︷︷ ︸
=:B p,q

α,β (s,x)

+O
{
(x − x0)

p}

as x → x0. For 2s − d 6= 1 and m = 0, . . . , p − 1:

bα,β,q
m (s) = (−1)m

m∑
l=0

(
q − 1 + l

l

)
ζ(2s − d + m − l, β)

(m − l)!(β − α)q+l

m−l−1∏
j=0

(2s − d + j). (3.7)

Finally, a function F p,q
α,β (s, x) having the desired properties is defined via (3.2). Note, that the integral∫ β−α

0
(β − α − x)s−d−1 x s−1 F p,q

α,β (s, x)dx = (−1)p
∫ β−α

0
(β − α − x)s+p−d−1x s+q−1G p,q

α,β(s, x)dx (3.8)
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vanishes for s =
n
2 whenever n is an integer with

max{2d + 2 − 2p, 2 − 2q, d − p − q + 2} ≤ n ≤ d. (3.9)

In fact, this is a consequence of (3.8) and:

Lemma 3.1. Let n ∈ Z with d − p − q + 2 ≤ n ≤ d, then G p,q
α,β (n/2, ·) and F p,q

α,β (n/2, ·) vanish identically.

Proof. For d − p − q + 2 ≤ n ≤ d and by Lemma A.1, (1) it follows that:

F p,q
α,β (n/2, x) = −

Bd−n+1(x + α)

d − n + 1
− P p,q

α,β (n/2, x).

In particular, F p,q
α,β (n/2, ·) is a polynomial of maximal degree p + q − 1. Since G p,q

α,β(n/2, x) is holomorphic for

Re(x) > −α it follows from (3.4) that F p,q
α,β (n/2, ·) has p + q roots and vanishes identically. Therefore G p,q

α,β(n/2, ·)

vanishes as well. �

3.1. The poles of Hα,β(s − d, s)

For d ∈ N0 and n := 2a + 1 ≤ d where a ∈ Z the condition (3.9) is fulfilled when choosing:

p = q := 2d − n + 1 ∈ N.

By inserting (3.2) into (3.1) and with the remark above Lemma 3.1 one obtains:

lim
s→n/2

(s − n/2)Hα,β(s − d, s)

= lim
s→n/2

0(2s − d)(s − n/2)

0(s − d)0(s)

∫ β−α

0
(β − α − x)s−d−1x s−1

P p,p
α,β (s, x)

(β − α)2s−d−1 dx . (3.10)

Since the Gamma function has simple poles at all non-positive integers −n where n ∈ N0 with residue (−1)n/n!

we can write:

0(2s − d) =
1

2s − n
·
(−1)d−n

(d − n)!
+ h(s)

where h(s) is analytic in a neighborhood of n/2. Now, (3.10) implies after a straightforward calculation:

Res
(

Hα,β(s − d, s), s =
n

2

)
=

(−1)d

(d − n)!

2d−n∑
j=0

(β − α)2d−n+ j+1

( j + d)!

×

[
(−1) j+nbα,β,p

j

(n

2

)
κ (d + 1, j + n − 2d) − aα,β,p

j

(n

2

)
κ (1, j + n − d)

]
(3.11)

where for integers a and b with a ≥ n − d and b ≥ n − 2d we define:

κ (a, b) :=
0
(
d −

n
2 + a

)
0
(
d −

n
2 + b

)
20
( n

2 − d
)
0
( n

2

) =
1
2

a−n+d−1∏
t=0

(n

2
+ t
) b−n+d−1∏

t=−d

(n

2
+ t
)

.

From (3.5) and (A.2) with the Bernoulli polynomials Bk , k ∈ N0 and Bk ≡ 0 for k < 0 one obtains for
j = 0, . . . 2d − n:

aα,β,p
j

(n

2

)
=

(d − n)!(−1) j+1

(α − β)2d−n+1+ j

j∑
l=0

(
2d − n + j − l

j − l

)
Bd−n+1−l(α)

(d − n + 1 − l)!l!
(β − α)l .

A similar formula holds for the coefficients bα,β,p
j (n/2) and after inserting these expression into (3.11) we derive:
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Proposition 3.1. For d ∈ N0 and integers n = 2a + 1 ≤ d where a ∈ Z the meromorphic the function Hα,β(s − d, s)
has simple poles at s = n/2 and s = (d + 1)/2. Moreover,

Rα,β,d

(n

2

)
= (−1)n+d+1

2d−n∑
j=0

j∑
l=0

(
2d − n + j − l

j − l

)
(β − α)l

( j + d)!l!

×

[
(−1)l Bd−n+1−l(β)

(d − n + 1 − l)!
κ (d + 1, j + n − 2d) +

Bd−n+1−l(α)

(d − n + 1 − l)!
κ (1, j + n − d)

]
is the residue at s = n/2. In s = (d + 1)/2 the residue of Hα,β(s − d, s) equals 1/2.

Proof. The proof of the last assertion remains: For Re(y) > 0 let h(·, y) be an entire function such that:

ζ (2s − d, y) =
1

2s − d − 1
+ h(s, y). (3.12)

By applying a decomposition similar to the one in (3.2) to h(s, x + α) instead of the zeta function there it can be
checked that:

0(2s − d)

0(s − d)0(s)

∫ β−α

0
(β − α − x)s−d−1x s−1h (s, x + α) dx

is holomorphic in a neighborhood of s = (d + 1)/2. By using (3.12) in (3.1) it follows:

lim
s→ d+1

2

(
s −

d + 1
2

)
Hα,β(s − d, s) =

1
2
. �

Example 3.1. We explicitly write the second residues of Hα,β(s − d, s) for d = 0, 1, 2:

(i) Rα,β,0(−1/2) = −
(β−α)2

16 ,

(ii) Rα,β,1(1/2) =
α−β

4 ,

(iii) Rα,β,2(1/2) =
3

16 (β − α)2.

In particular, these expressions only depend on the difference between α and β and vanish for α → β.

3.2. The values Hα,β(−d, 0)

From now on we consider the point s = 0 in which Hα,β(s − d, s) is holomorphic. By choosing p := d + 1 and
q := 1 in (3.2) condition (3.9) holds for n := 0. Therefore it follows from the remark above Lemma 3.1 that:

Hα,β (−d, 0) = lim
s↓0

1

(β − α)2s−d−1

0(2s − d)

0(s − d)0(s)

∫ β−α

0
(β − α − x)s−d−1x s−1 Pd+1,1

α,β (s, x)dx . (3.13)

According to the decomposition (3.3) we write:

Hα,β (−d, 0) = lim
s↓0

{
J (s) +

d∑
m=0

Im(s)

}
. (3.14)

Using Lemma A.1 (4), the meromorphic function J (s) is given by:

J (s) : =
(−1)d+1

(β − α)2s−d−1 Ad+1,1
α,β (s)

0(2s − d)

0(s − d)0(s)
(β − α)2s 0(s + 1)0(s)

0(2s + 1)

=
1
2
ζ (2s − d, α)

d∏
j=1

s − j

2s − j
. (3.15)
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For m ∈ {0, . . . , d} it follows from Lemma A.1, (4):

Im(s) = bα,β,1
m (s)(−1)m (β − α)m+1 s

2s − d + m

m−1∏
j=0

s − d + j

2s − d + j
.

After inserting the expression (3.7) for bα,β,1
m (s) one has:

Im(s) =

m∑
l=0

{
(β − α)m−l

(m − l)!

s

2s − d + m
ζ (2s − d + m − l, β)

m−l−1∏
j=0

(2s − d + j)
m−1∏
j=0

s − d + j

2s − d + j

}
(3.16)

where m ∈ {0, . . . , d} (“empty products” = 1).

Proposition 3.2. For β > α > 0:

Hα,β (−d, 0) = ζ (−d, α) +
1
2

(α − β)d+1

d + 1
.

Proof. Note that J (0) =
1
2ζ(−d, α) and Im(0) = 0 for m ∈ {0, . . . , d − 1}. Moreover,

Id(0) =
1
2

d∑
l=0

(
d

l

)
(α − β)d−l ζ (−l, β) =

1
2
ζ (−d, α) +

1
2

(α − β)d+1

d + 1
.

Here we used Lemma A.1, (5) in the second equation. �

Example 3.2. Applying Lemma A.1, (1) and the explicit expressions for the Bernoulli polynomials given in the
Appendix one has:

(i) Hα,β (0, 0) =
1
2 (1 − α − β),

(ii) Hα,β (−1, 0) = −
1
2

(
α2

− α +
1
6

)
+

1
4 (α − β)2,

(iii) Hα,β (−2, 0) = −
1
3α (α − 1)

(
α −

1
2

)
+

1
6 (α − β)3.

3.3. The values H ′
α,β(−d, 0)

From Lemma 3.1 it is clear, that the expression

0(2s − d)

0(s − d)0(s)

∫ β−α

0
(β − α − x)s−d−1 x s−1 Fd+1,1

α,β (s, x)dx

vanishes to second order at s = 0. Using the notations of (3.14) we find:

H ′
α,β (−d, 0) =

∂

∂s

{
J (s) +

d∑
m=0

Im(s)

}
|s=0

. (3.17)

In the following we write ζ ′(s, x) :=
∂
∂s ζ(s, x). By a direct calculation it follows from (3.15) and (3.16), that:

∂ J

∂s
(0) =

1
2
ζ (−d, α)

d∑
j=1

1
j

+ ζ ′ (−d, α) . (3.18)

For m ∈ {0, . . . , d − 1}:

∂ Im

∂s
(0) =

m∑
l=0

(α − β)m−l

−d + m

(
d

m − l

)
ζ (−d + m − l, β) . (3.19)
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For m = d one has:

Id(s) =
1
2

d∑
l=0

(β − α)d−l

(d − l)!
ζ (2s − l, β)

d−l−1∏
j=0

(s − d + j)
d−1∏

j=d−l

s − d + j

2s − d + j︸ ︷︷ ︸
=:h(s)

where

∂h

∂s
(0) = (−1)d−l d!

l!

{
l∑

j=1

1
j

−

d∑
j=l+1

1
j

}
.

Hence, if the empty sum is interpreted as 0:

∂ Id

∂s
(0) =

d∑
l=0

(α − β)d−l
(

d

l

){
ζ ′ (−l, β) +

1
2

[
l∑

j=1

1
j

−

d∑
j=l+1

1
j

]
ζ (−l, β)

}
.

According to (3.17):

H ′
α,β (−d, 0) =

1
2
ζ (−d, α)

d∑
j=1

1
j

+ ζ ′ (−d, α) +

d−1∑
m=0

m∑
l=0

(α − β)m−l

−d + m

(
d

m − l

)
ζ (−d + m − l, β)

+

d∑
l=0

(α − β)d−l
(

d

l

){
ζ ′ (−l, β) +

1
2

[
l∑

j=1

1
j

−

d∑
j=l+1

1
j

]
ζ (−l, β)

}
.

For further simplification of this expression note that:

d−1∑
m=0

m∑
l=0

(α − β)m−l

−d + m

(
d

m − l

)
ζ (−d + m − l, β) =

d−1∑
m=0

d∑
l=d−m

(
d

l

)
(α − β)d−l

−d + m
ζ (−l, β)

=

d∑
l=1

(
d

l

)
(α − β)d−l ζ (−l, β)

d−1∑
m=d−l

1
−d + m

= −

d∑
l=0

(
d

l

)
(α − β)d−l ζ (−l, β)

l∑
j=1

1
j
.

Thus we arrive at:

H ′
α,β (−d, 0) =

1
2

{
ζ (−d, α) −

d∑
l=0

(
d

l

)
(α − β)d−l ζ (−l, β)

}
d∑

j=1

1
j

+ ζ ′ (−d, α) +

d∑
l=0

(
d

l

)
(α − β)d−l ζ ′ (−l, β) .

Finally, by using Lemma A.1, (5) it has been shown:

Proposition 3.3. For β > α > 0 and d ∈ N0:

H ′
α,β (−d, 0) = −

(α − β)d+1

2d + 2

d∑
j=1

1
j

+ ζ ′ (−d, α) +

d∑
l=0

(
d

l

)
(α − β)d−l ζ ′ (−l, β) .

Example 3.3. We write the formulas in Proposition 3.3 explicitly for d = 0, 1, 2:

(i) H ′
α,β(0, 0) = ζ ′(0, α) + ζ ′(0, β) (generalized Lerch formula),
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(ii) H ′
α,β(−1, 0) = −

(α−β)2

4 + ζ ′ (−1, α) + (α − β)ζ ′ (0, β) + ζ ′ (−1, β),

(iii) H ′
α,β(−2, 0) = −

(α−β)3

4 + ζ ′ (−2, α) + (α − β)2ζ ′ (0, β) + 2(α − β)ζ ′ (−1, β) + ζ ′ (−2, β) .

4. Examples and applications

For a variety of fix point free groups G ⊂ SO(2N + 2) we derive explicit expressions for the zeta regularized
determinant det ∆MG of the spherical space form S2N+1/G. Apart from the 3-dimensional lens spaces which have
been treated in [13] we also consider cases of higher dimensions and the binary dihedral groups D∗

m for m ∈ N and
N = 1 which are not lens spaces (cf. the classification in [14,19]).

4.1. 3-dimensional spherical space forms

For N = 1 (3-dimensional case) we first calculate all possible residues Ck(g, γ ) in (2.9) for g = I and fix point
free elements g ∈ SO(4). As an example we derive the well-known formulas for the zeta-regularized determinants
for the sphere S3 and the real projective space RP3. Four cases can be distinguished:

Case I: For g = I one has γ = 1 and according to (2.1) or (2.9): Ck(I, 1) = mk = (k + 1)2. With our notations in
(2.4) this shows that:

ζS3(s) = JI,1(s) = H1,3 (s − 2, s) + 2H1,3 (s − 1, s) + H1,3 (s, s) .

Example 4.1 (cf. [15]). According to Proposition 3.3 (Example 3.3):

ζ ′

S3(0) = ζ ′(−2) + ζ ′(−2, 3) + 2ζ ′(−1) − 2ζ ′(−1, 3) + log
1
π

where we used ζ ′(0) = − log
√

2π . Moreover, from

ζ ′(−m, 1 + n) = ζ ′(−m) +

n∑
r=2

rm log r (4.1)

together with2 ζ ′(−2) = −
ζ(3)

4π2 we find for the zeta-regularized determinant of S3 the well-known expression:

log det ∆S3 =
ζ(3)

2π2 + log π.

Case II: For g = −I one has Ck (−I, −1) = (−1)k(k + 1)2. According to (2.4):

J−I,−1(s) = J1(s) − J 1
2
(s)

where we define for α > 0:

Jα(s) =
1

4s−1 Hα,1+α (s − 2, s) +
1

4s−1 Hα,1+α (s − 1, s) +
1
4s Hα,1+α (s, s) .

Therefore, the spectral zeta function of RP3 can be written as:

ζRP3(s) =
ζS3(s)

2
+

1
2

{
J1(s) − J 1

2
(s)
}

. (4.2)

and J−I,−1 = J1 − J 1
2

has an extension to an entire function according to Proposition 2.1.

2 Cf. [13] p. 1502 or differentiate ζ(s) = 2sπ s−10(1 − s)ζ(1 − s) sin( sπ
2 ) in [18] p. 275 at s = −2.
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Example 4.2 (cf. [13]). By a direct calculation using ζ ′(s, 1+α) = ζ ′(s, α)+α−s log α together with Propositions 3.2
and 3.3:

∂ Jα

∂s
(0) = 8ζ ′(−2, α) + 2ζ ′(0, α) + (1 − 2α)2 log α +

4
3
α

(
α −

1
2

)(
α +

1
2

)
log 4.

Hence, with ζ ′(0) − ζ ′(0, 1
2 ) = log 1

√
π

:

∂

∂s
J−I,−1(0) = 8

[
ζ ′(−2) − ζ ′

(
−2,

1
2

)]
+ log

4
π

=
4

π2

∫ π
2

0
z(z − π) cot(z)dz + log

8
π

where in the second equation we have used the following identity in [13], p. 1503:

ζ ′

(
−2,

1
2

)
= ζ ′(−2) −

log 2
8

−
1

2π2

∫ π
2

0
z(z − π) cot(z)dz.

Finally, by using (4.2) it follows:

log det ∆RP3 =
log det ∆S3

2
−

2

π2

∫ π
2

0
z(z − π) cot(z)dz −

1
2

log
8
π

.

Case III: Let g ∈ SO(4) be of order qg > 2 with eigenvalues {γ, γ, γ , γ }. By a straightforward calculation and
for δ ∈ {γ, γ }:

Ck (g, δ) = (k + 1)
γ −k

1 − γ 2 . (4.3)

With our notations in Proposition 2.2 and for ν = 0, . . . , qg − 1:

α0 (g, ν) = 2Re
(

γ −ν

1 − γ 2

)
and α1 (g, ν, ) = 2qgRe

(
γ −ν

1 − γ 2

)
.

Case IV: Let g ∈ SO(4) be of order qg > 2 with eigenvalues {γ, γ , µ,µ} ∈ S1
\ {−1, 1} such that γ 6∈ {µ, µ}. Then

it holds by a straightforward calculation, cf. (4.8):

Ck (g, γ ) =
γ −k

(γ − µ)(γ − µ).

Hence, with the notations of Proposition 2.2 and Ck (g, γ ) = Ck (g, γ ) one has:

α0 (g, ν) = 2Re

{
γ −(ν+1)

− µ−(ν+1)

γ − µ

1
1 − γµ

}
and α1 (g, ν) = 0

for k = qg` + ν and ν = 0, . . . , qg − 1.

4.2. Lens spaces

Let q, N ∈ N and set γ := exp(2π
√

−1/q). With integers p0, p1, . . . , pN prime to q and the identification
CN+1 ∼= R2N+2 we define an isometry g of R2N+2 by:

g : (z0, z1, . . . , zN ) →
(
γ p0 z0, γ

p1 z1, . . . , γ
pN zN

)
. (4.4)

Then g generates a cyclic group G = {gk
}k=0,...,q−1 in SO(2N + 2) and all I 6= g ∈ G act fix point freely on

S2N+1. The spherical space form

L (q : p0, . . . , pN ) := MG = S2N+1/G
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is called a lens space. By Theorem 2.1, the generating function converges on |z| < 1 to

FG(z) =
1
q

q−1∑
l=0

1 − z2

N∏
i=0

(1 − γ pi l z)(1 − γ −pi l z)

which has (for l = 0) a pole of order 2N + 1 at z = 1 with coefficient 2/q in the Laurent expansion.

4.2.1. The case p0 = p1 = · · · = pN = 1
In particular, by choosing p0 = p1 = · · · = pN = 1 one finds:

z2
− 1

zk+1 det(I − g j z)
=

1

(z − γ − j )N+1(z − γ j )N+1

{
1

zk−1 −
1

zk+1

}
.

Applying (2.7) with ρ = 0 and ρ = γ − j , and γ̃ = γ j ( j 6= 0):

1

zk−1(z − γ − j )N+1(z − γ j )N+1 =

∞∑
n1,n2=0

(−1)n1+n2

(
k − 2 + n1

n1

)(
N + n2

n2

)
× γ − j (k−1+n1)

(
γ j

− γ − j
)−(N+1+n2)

(
z − γ j

)n1+n2−N−1
.

By using these expressions and as a generalization of Case III in Section 4.1 one readily verifies for integers N ≥ 1:

Lemma 4.1. For all k ∈ N0 and δ := γ j :

Ck

(
g j , δ

)
=

N−2∑
n=0

(
N + n

n

){(
k + N − 2 − n

N − n

)
− δ−2

(
k + N − n

N − n

)}

×
(−1)n+1δ2(n+1)−k

(1 − δ2)n+N+1 − (−1)N (k + 1)

(
2N − 1
N − 1

)
δ2(N−1)−k

(1 − δ2)2N−1 .

In particular, Ck(g j , δ) = Ck(g j , δ−1).

Assume that q is an odd integer. Let g and G = {gk
}k=0,...,q−1 be as above. Then it follows from Proposition 2.1:

mk(MG) =
mk

q
+

2
q

Re
q−1∑
j=1

Ck

(
g j , γ j

)
. (4.5)

We explicitly treat the case N = 1 (=3-dimensional lens space). We find from (4.3) or Lemma 4.1 that:

Ck

(
g j , δ

)
= (k + 1)

δ−k

1 − δ2 .

Therefore, applying Lemma A.3 one has for the dimensions of the eigenspaces:

mk(MG) =
mk

q
+ (k + 1)rk

where for k ∈ N the numbers

rk :=
1
q

[
q + 1 − 2β(1)

q (−k)
]

∈
1
q

Z

are q-periodic in k. Here the expressions β
(1)
q (−k) are defined in (A.3) of the Appendix. By writing k = `q +ν where

0 ≤ ν ≤ q − 1 and ` ∈ N0 we obtain from a decomposition similar to the one in (2.11):

ζMG (s) =
ζS3(s)

q
+

1

q2s

q∑
ν=1

rν

[
q H ν

q , ν+2
q

(s − 1, s) + H ν
q , ν+2

q
(s, s)

]
.
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According to Proposition 2.1 the second term on the right hand side extends to an entire function. By evaluating its
residue in s = 1 and using Proposition 3.1 one has the identity:

q∑
ν=1

rν = 0. (4.6)

Theorem 4.1 ([13]). The zeta-regularized determinant of MG is given by:

log det ∆MG =
log det ∆S3

q
−

q∑
ν=1

rν Aq(ν) (4.7)

where in terms of the Hurwitz Zeta function and its derivatives:

Aq(ν) = q

[
ζ ′

(
−1,

ν

q

)
+ ζ ′

(
−1,

ν + 2
q

)]
−

1
q

+ ζ ′

(
0,

ν

q

)
− ζ ′

(
0,

ν + 2
q

)
− 2

[
qζ

(
−1,

ν

q

)
+ ζ

(
0,

ν

q

)]
log q.

Proof. By Propositions 3.2 and 3.3:

Aq(ν) =
∂

∂s

[
1

q2s−1 H ν
q , ν+2

q
(s − 1, s) +

1

q2s
H ν

q , ν+2
q

(s, s)

]
|s=0

. �

Remark 4.1. From (4.6) together with Proposition B.1 it directly follows that the sum on the right hand side of (4.7)
can completely be written in terms of the following multiple Gamma functions: 00(x) = x−1, 01 := 0 and 02 := G
(Barnes’s G-function).

Finally, we want to derive a second and more simple expression for mk(MG). Using (A.7) of Lemma A.4 shows
that:

mk(MG) = (k + 1)γq(k) ≤
(k + 1)(k + q + 2)

q
.

Here the integers γq(k) are defined in (A.6) of the Appendix.

Example 4.3. In the case N = 2 we only calculate the dimensions of the eigenspaces of the Laplacian. However, the
derivative of the zeta-regularized determinant can be derived in a way similar to our calculation above. According to
Lemma 4.1 and for an eigenvalue δ of g j

6= I :

Ck(g
j , δ) = −

(
k + 3

2

)
δ2−k

(1 − δ2)3 +

(
k + 2

2

)
δ−k

(1 − δ2)3 .

This together with (4.5) and Lemma A.3 shows that:

mk(MG) =
mk

q
+

k + 2

q3

[
(k + 3)β(3)

q (2 − k) − (k + 1)β(3)
q (−k) −

q2

4
(q + 1)3

]
.

4.2.2. The case: q odd prime and 1 = p0 < · · · < pN < q
Let q ∈ N be an odd prime number and assume that q > N + 1. With integers

1 = p0 < · · · < pN < q

we consider the lens space MG := L(q : p0, . . . , pN ). For γ and g as in (4.4) and with (2.6) it follows that the
assignment:

C 3 z 7→
z2

− 1

zk+1 det(I − gl z)
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has simple poles at γ lp j for j = 0, . . . N and l = 1, . . . q − 1. One readily verifies for the residues defined in
Proposition 2.1:

Ck

(
gl , γ lp j

)
=

1

γ lkp j

N∏
m=0
m 6= j

1[
1 − γ l(p j −pm )

] [
1 − γ l(p j +pm )

] . (4.8)

In particular, we note from this expression that:

Ck

(
gl , γ lp j

)
= Ck

(
gl , γ −lp j

)
.

In order to calculate the dimensions mk(MG) of the eigenspaces of the Laplacian ∆MG more explicitly we need
the following result:

Lemma 4.2. Let {γ0, . . . , γm} ⊂ S1 be q-th roots of unity and γ j 6= 1. Then for k ∈ Z:

q−1∑
r=1

γ rk
0

m∏
l=1

1
1 − γ r

l
=

(−1)m

qm

q∑
i1,...im=1

i1i2 · · · im ×

{
q − 1 if γ

i1−1
1 γ

i2−1
2 · · · γ im−1

m = γ −k
0

−1 else.

Proof. According to Lemma A.2 one can write:

m∏
l=1

1
1 − γ r

l
=

(−1)m

qm

q∑
i1,...im=1

i1i2 · · · imγ
r(i1−1)
1 · · · γ r(im−1)

s .

After multiplying by γ rk
0 and summing over r the assertion follows. �

By writing î j we mean as usual that i j does not appear in the summation below. We define the integers:

δq,k(p j ) :=

q∑
i0,...î j ,...iN =1
s0,...ŝ j ···sN =1

i0s0 · · · î j ŝ j · · · iN sN ×


1 if p j

(∑
l 6= j

[il + sl ] − k − 2N

)
≡

∏
l 6= j

pl(il − sl) mod q

0 else.

(4.9)

Then (4.9) is q-periodic in the variable k and from (4.8) together with Lemma 4.2 it can be deduced that:

q−1∑
r=1

Ck
(
gr , γ r p j

)
=

δq,k(p j )

q2N−1 −
(q + 1)2N

4N .

For G := {gk
}k=0,...,q−1 and according to Proposition 2.1 one obtains for the dimension of the eigenspaces:

mk(MG) =
mk

q
+

2
q

q−1∑
r=1

N∑
j=0

Ck
(
gr , γ r p j

)
=

1
q

[
mk −

N + 1

22N−1 (q + 1)2N
]

+
2

q2N

N∑
j=0

δq,k(p j ). (4.10)

In particular, if we write k = `q + ν it follows that mk(MG) has the form

mk(MG) =
m`q+ν

q
+ tν,

where the numbers tν are defined by:

tν :=
2

q2N

[
N∑

j=0

δq,ν(p j ) − q2N−1(N + 1)
(q + 1)2N

4n

]
∈

2

q2N
Z.
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By a direct calculation using tq = t0 it follows that:

ζMG (s) =
ζS2N+1(s)

q
+

1

q2s

q∑
ν=1

tν H ν
q , ν+2N

q
(s, s) (4.11)

and the sum on the right hand side defines an entire function. By forming the derivative:

ζ ′

MG
(s) =

ζ ′

S2N+1(s)

q
+

q∑
ν=1

tν

[
H ′

ν
q , ν+2N

q
(s, s) − 2H ν

q , ν+2N
q

(s, s) log q

]
.

Hence, by Propositions 3.2 and 3.3 we obtain for det ∆MG :

Theorem 4.2. Let q be an odd prime number and 1 = p0 < · · · < pN < q, then:

log det ∆MG =
log det ∆S2N+1

q
−

q∑
ν=1

tν Bq(ν)

where

Bq(ν) = ζ ′

(
0,

ν

q

)
+ ζ ′

(
0,

ν + 2N

q

)
− 2ζ

(
0,

ν

q

)
log q +

2N log q

q
.

Remark 4.2. By applying Lemma A.1, (1) and (2) the numbers Bq(ν) are real and can be expressed in terms of the
Gamma function as:

Bq(ν) = log
0
(

ν
q

)
0
(

ν+2N
q

)
2π

−
q − 2ν − 2N

q
log q.

Moreover, we remark that by calculating the residues on both sides of (4.11) at s = 1/2 and by Proposition 3.1 it
follows that

q∑
ν=1

tν = 0.

4.2.3. Spherical space forms via the dihedral group
Consider the dihedral group Dm of degree m (and order 2m) in SO(3) (cf. [19]) which is generated by the matrices:

A :=


cos

(
2π

m

)
− sin

(
2π

m

)
0

sin
(

2π

m

)
cos

(
2π

m

)
0

0 0 1

 and B :=

1 0 0
0 −1 0
0 0 −1

 .

Then A and B satisfy the relations Am
= B2

= 1 and B AB−1
= A−1. Let

H = {a + bi + cj + dk : a, b, c, d ∈ R}

denote the field of quaternions with basis {1, i, j, k} over R and with the usual relations: i2 = j2
= k2

= −1,
ij = −ji = k, jk = −kj = i and ki = −ik = j. The subset

H′
:=

{
q ∈ H : |q|

2
= qq̄ = 1

}
of H forms the multiplicative group of unit quaternions which is isomorphic to SU (2). The real 3-dimensional
subspace of H spanned by {i, j, k} is denoted by H0. There is a map π which is onto and defined by:

π : H′
→ SO(3) : π(q)p := qpq
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where q ∈ H′ and p ∈ H0. Solving π
(
qA, j

)
= A j for j = 0, . . . m−1 and π (qB) = B we find after a straightforward

calculation that:

±qB = i and ± qA, j = cos
(

π j

m

)
+ sin

(
π j

m

)
k. (4.12)

In the following we define qA, j and qB by the positive sign on the left hand sides of (4.12). Then clearly qA, j = q j
A,1

is a 2m-th unit root.
The binary dihedral group D∗

m ⊂ SO(4) (via left multiplication on H ∼= R4) of order 4m is now given by:

D∗
m :=

{
±q j

A,1, ±q j
A,1 · qB : j = 0, . . . m − 1

}
.

According to the classification result in [19] it gives rise to an infinite class of spherical space forms parametrized
by m and different from the lens spaces. Our goal in this section is it to derive an explicit formula for the corresponding
spectral zeta function and the zeta-regularized determinant.

The characteristic polynomial Pj of qA, j = q j
A,1 acting on H can be calculated as:

Pj (λ) =

[
λ2

− 2 cos
(

π j

m

)
λ + 1

]2

.

Hence ±q j
A,1 have the eigenvalues {±λ j , ±λ j , ±λ j , ±λ j } ⊂ S1 where λ j denotes the 2m-th unit root:

λ j := e
√

−1 π j
m

and in particular qA, j for j 6= 0 is fix point free. From Lemma A.2 and (4.3) one has for j 6= 0:

Ck

(
q j

A,1, λ j

)
= (k + 1)

λ
−k j
1

1 − λ
2 j
1

−
k + 1

m

m∑
i=1

iλ(2i−2−k) j
1

because λ
2 j
1 is of order m. Similarly, it holds:

Ck

(
−q j

A,1, −λ j

)
= (−1)kCk

(
q j

A,1, λ j

)
.

Summing over j = 1, . . . m − 1 yields:

m−1∑
j=1

{
Ck

(
q j

A,1, λ j

)
+ Ck

(
−q j

A,1, −λ j

)}
= (k + 1) ×

{
m + 1 − 2σm(k) k even
0 else

where

σm(k) :=

m∑
i=1

i ×

{
1 if 2i − 2 ≡ k mod 2m
0 else.

For elements in D∗
m of the form

g j := q j
A,1 · qB = cos

(
π j

m

)
i + sin

(
π j

m

)
j

the characteristic polynomial Q j (λ) =
[
λ2

+ 1
]2

is independent from j . In particular, g j for 0 ≤ j ≤ m − 1 has the
eigenvalues {

√
−1,

√
−1, −

√
−1, −

√
−1}. Moreover,

Ck

(
g j ,

√
−1
)

=
k + 1

2
(−1)

−k
2

and

Ck

(
−g j , −

√
−1
)

= Ck

(
g j , −

√
−1
)

= (−1)k k + 1
2

(−1)
−k
2 .
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Hence one obtains:

m−1∑
j=0

{
Ck

(
g j ,

√
−1
)

+ Ck

(
−g j , −

√
−1
)}

= (k + 1) ×

{
m(−1)−

k
2 k even

0 else.

Finally, by using formula (4.5) it follows for the dimension mk(MG) of eigenspaces:

mk(MG) =
mk

4m
+ (k + 1)nk

where the rational numbers nk are defined by:

nk :=
1

2m
×

{
m + 1 + m(−1)

k
2 − 2σm(k) k even

0 else.

Note that nk as a function of k is 4m-periodic. Hence, writing k = 4m` + ν where ν = 0, . . . 4m − 1 one has with
n4m = n0 and a calculation similar to the one above Theorem 4.1:

ζMG (s) =
ζS3(s)

4m
+

1

(4m)2s

4m∑
ν=1

nν

[
4m H ν

4m , ν+2
4m

(s − 1, s) + H ν
4m , ν+2

4m
(s, s)

]
.

According to Proposition 2.1 the second term on the right hand side extends to an entire function and by calculating
the residue in s =

3
2 it follows that

4m∑
ν=1

nν = 0.

Theorem 4.3. The zeta-regularized determinant of MG is given by:

log det ∆MG =
log det ∆S3

4m
−

4m∑
ν=1

nν A4m(ν)

where A4m(ν) ∈ R in terms of the Hurwitz zeta function is defined in Theorem 4.1.

Remark 4.3. In Corollary 2.1 we gave a general formula for the zeta-regularized determinant of the Laplacian on
spherical space forms. The examples we have dealt with more explicitly are limited and even for three dimensional
spherical space forms we did not cover all possible cases. The distinct eigenvalues of the Laplacian on MG are known
and the most challenging part is the calculation of the corresponding multiplicities. In this matter our analysis depends
on the explicit form of the generating function in Theorem 2.1. However, as was remarked in Section 4.1, in the three
dimensional case only three different types of polynomials depending on the eigenvalues of g ∈ G \ {I } appear in
the calculation of these multiplicities. Therefore, in principle we can determine the zeta-regularized determinants for
all three dimensional spherical space forms from a matrix representation of the group G in SO(4) by using formula
(2.5).
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Appendix A

In the present appendix we collect useful formulas which are used throughout this paper. Moreover, the non-
negative quantities β

(m)
q (k) and γq(k) appearing in our above formulas are defined. We start with some relations

involving the Hurwitz zeta-function.
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Lemma A.1. Let Bn denote the n-th Bernoulli polynomial, then:

(1) ζ(−n, x) = −
Bn+1(x)

n+1 (polynomial of degree n + 1) and

∂k Bn

∂xk (x) =
n!

(n − k)!
Bn−k(x).

(2) ζ ′(0, x) = log 0(x) −
1
2 log(2π) where x > 0.

(3) For k ∈ N and s ∈ C \ {1} it holds:

ζ (k)
x (s, x) =

(−1)kζ (s + k, x)

k−1∏
j=0

(s + j) if s 6= 1 − k,

−(k − 1)! if s = 1 − k.

(4) For r > 0 and t > 0:∫ β−α

0
(β − α − x)r−1 x t−1dx = (β − α)r+t−1 0(r)0(t)

0(r + t)
.

(5) For d ∈ N0 and β > α > 0:

ζ (−d, α) −

d∑
l=0

(
d

l

)
ζ (−l, β) (α − β)d−l

= −
(α − β)d+1

d + 1
. (A.1)

Proof. The identities (1)–(4) are well-known and we only prove (5). According to (1) the assignment α 7→ ζ(−d, α)

is a polynomial of maximal degree d +1. Therefore it coincides with its (d +1)-th order Taylor expansion in β. Using
(1) one has:

ζ (l)
x (−d, β) = −

d!

(d + 1 − l)!
Bd+1−l(β) (A.2)

and

ζ (−d, α) = −

d∑
l=0

d!

l!(d + 1 − l)!
Bd+1−l(β) (α − β)l

−
B0(β)

d + 1
(α − β)d+1

=

d∑
l=0

(
d

l

){
−

Bl+1(β)

l + 1

}
(α − β)d−l

−
(α − β)d+1

d + 1
.

Using (1) again, the identity (A.1) follows. �

Frequently the explicit form of Bn is used. Therefore we list several Bernoulli polynomials below. Bn is given as
coefficients of the Taylor expansion:

uexu

eu − 1
=

∞∑
n=0

Bn(x)
un

n!
,

where x ∈ R and |u| < 2π . In particular,

B0(x) = 1

B1(x) = x −
1
2

B2(x) = x2
− x +

1
6

B3(x) = x(x − 1)

(
x −

1
2

)
.

Lemmas A.2 and A.3 are crucial in calculating the eigenspace dimensions of the Laplacian on spherical space
forms. Let q ∈ N:
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Lemma A.2. Let γ 6= 1 be a q-th root of unity, then
∑q

i=1 iγ i
= −qγ (1 − γ )−1.

Proof. Use the well-known formula:
k∑

i=1

i x i
=

kxk+2
− (k + 1)xk+1

+ x

(1 − x)2 . �

For i := (i1, . . . , im) ∈ Nm we write |i | := i1 + · · · + im . In the following we use the integers:

β(m)
q (r) =

q∑
i1···im=1

i1 · · · im ×

{
1 if 2m − 2|(i1, . . . , im)| ≡ r mod q
0 else

(A.3)

where r ∈ Z. Note that (A.3) is q-periodic in r . In particular, for fixed q, m ∈ N the sequence (β
(m)
q (r))r∈Z is bounded.

Lemma A.3. Let r ∈ Z and q ∈ N an odd integer. For p ∈ {1, . . . q − 1} with (p, q) = 1 set γ := exp(2π
√

−1p/q).
For m ∈ N:

q−1∑
j=1

γ jr

(1 − γ 2 j )m
= (−1)m

[
β

(m)
q (r)

qm−1 −
(q + 1)m

2m

]
. (A.4)

Proof. We prove (A.4) by induction with respect to m. Assume, that m = 1 and apply Lemma A.2:

q−1∑
j=1

γ jr

1 − γ 2 j
=

q−1∑
j=1

γ j (r−2) γ 2 j

1 − γ 2 j
= −

1
q

q∑
i=1

i
q−1∑
j=1

γ j (r−2+2i).

Note, that

q−1∑
j=1

γ j (r−2+2i)
=

{
q − 1 if r − 2(1 − i) ≡ 0 mod q,

−1 else

which shows (A.4) in the case m = 1:

q−1∑
j=1

γ jr

1 − γ 2 j
= −β(1)

q (r) +
1
q

q∑
i=1

i = −β(1)
q (r) +

q + 1
2

. (A.5)

To show m → m + 1 we use Lemma A.2 again:

q−1∑
j=1

γ jr

(1 − γ 2 j )m+1 = −
1
q

q∑
im+1=1

im+1

q−1∑
j=1

γ j (r−2+2im+1)

(1 − γ 2 j )m

=
(−1)m+1

qm+1

q∑
im+1=1

im+1β
(m) (r − 2 + 2im+1) + (−1)m (q + 1)m

q2m

q∑
im+1=1

im+1.

Finally, notice that

q∑
im+1=1

im+1β
(m) (r − 2 + 2im+1) = β(m+1)

q (r). �

We derive a second expression for the integers β
(m)
q (r) in the case where m = 1 and q is an odd integer. Let us

define for k ∈ Z:

γq(k) := ] {r : k ≡ 2r mod q where r = 0, . . . k} . (A.6)



W. Bauer, K. Furutani / Journal of Geometry and Physics 58 (2008) 64–88 85

Lemma A.4. With k ∈ N and q odd, β
(1)
q (−k) and γq(k) are related via:

β(1)
q (−k) = −

qγq(k)

2
+

k + q

2
+ 1. (A.7)

In particular, there is an estimate: γq(k) ≤ (k + q + 2)/q.

Proof. We calculate the left hand side of (A.4) (which is real due to Lemma A.3) for m = 1 in a second way:

q−1∑
j=1

γ − jk

1 − γ 2 j
= Re

q−1∑
j=1

γ − j (k+1)

γ − j − γ j =
1
2

q−1∑
j=1

γ − jk 1 − γ 2 j (k+1)

1 − γ 2 j

=
1
2

k∑
r=0

q−1∑
j=1

γ j (2r−k)
=

1
2

[
qγq(k) − (k + 1)

]
.

According to Lemma A.3 one has:

q−1∑
j=1

γ − jk

1 − γ 2 j
= −β(1)

q (−k) +
q + 1

2
.

By comparing these expressions the assertion follows. �

Appendix B

There are many ways to obtain the analytic continuation of the function Hα,β(s1, s2). In this Appendix B we explain
a method different from our previous one to express the derivative of the Dirichlet series (1.3) at s = 0 in the form of
an infinite series in the cases d = 0, 1. We use Weierstrass’s canonical form of the 0-function for d = 0 and we write
the analytic extension of (1.3) in terms of Barne’s G-function G (cf. [17,18]) in the case where d = 1. By comparing
these formulas with the corresponding ones given above we can derive a relation between G, the 0-function and the
derivative of the Hurwitz zeta function (cf. Proposition B.1). Define

Φ(d,α,β)(s) =

∞∑
k=1

1
(k + α)s−d(k + β)s = Hα,β(s − d, s) −

1
αs−dβs .

Here we consider the sum for k > 0 and we only deal with the cases d = 0 and d = 1 as examples. The constants
α and β are assumed to be positive, but they may take complex values with Re(α), Re(β) > −1.

I. d = 0.

Φ(0,α,β)(s) =

∞∑
k=1

1

k2s

1
(1 + α/k)s(1 + β/k)s =

∞∑
k=1

1

k2s

(
∞∑

n=0

(log(1 + α/k)(1 + β/k))n

n!
(−s)n

)

=

∞∑
k=1

1

k2s

(
1 − s log(1 + α/k)(1 + β/k) + s2 R(2)

k (α, β, s)
)

.

The functions R(2)
k (α, β, s) (k = 1, 2, . . .) are given by

∞∑
n=2

(log(1 + α/k)(1 + β/k))n

n!
(−s)n−2

and R(2)
k (α, β, s) is holomorphic in s on the whole complex plane for any k.

For n ≥ 2 the functions

∞∑
k=1

1

k2s+n
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are uniformly bounded on the region Re(s) ≥ −1/2 + ε (ε > 0). Hence according to the estimate∣∣∣∣∣ ∞∑
k=1

1

k2s
R(2)

k (α, β, s)

∣∣∣∣∣ ≤

∞∑
n=2

∞∑
k=1

∣∣∣∣ 1

k2s

∣∣∣∣ (α + β

k

)n
|s|n−2

n!
(B.1)

the function
∞∑

k=1

1

k2s
R(2)

k (α, β, s)

is holomorphic on the domain Re(s) > −1/2. Now, the derivative of the function

∞∑
k=1

1

k2s (1 − s log(1 + α/k)(1 + β/k)) = ζ(2s) − s
∞∑

k=1

1

k2s (log(1 + α/k)(1 + β/k) − (α + β)/k)

− s(α + β)ζ(2s + 1)

at s = 0 coincides with the derivative of the Dirichlet series Φ(0,α,β)(s) at s = 0 and

dΦ(0,α,β)(s)

ds |s=0
= 2ζ ′(0) −

∞∑
k=1

(log(1 + α/k)(1 + β/k) − (α + β)/k) − (α + β)
d(s · ζ(2s + 1))

ds |s=0
.

By using Weierstrass’s canonical form of the 0-function, cf. [1]:

1
0(s)

= s · eCs
∞∏

k=1

(1 + s/k) e−s/k

(C is Euler’s constant) we have

dΦ(0,α,β)(s)

ds |s=0
= 2ζ ′(0) + log 0(α + 1)0(β + 1) + (α + β)

(
C − (sζ(2s + 1))′

|s=0

)
= − log 2π + log 0(α + 1)0(β + 1) + (α + β)(C − C)

= log
0(α + 1)0(β + 1)

2π

which coincides with our previous results in Proposition 3.3 and Example 3.3.
II. d = 1.
We decompose

Φ(1,α,β)(s) = α · Φ(0,α,β)(s) + K(1,α,β)(s)

where the remainder term K(1,α,β)(s) is defined by

K(1,α,β)(s) =

∞∑
k=1

k

(k + α)s(k + β)s .

Similar to the case d = 0 we have:

K(1,α,β)(s) =

∞∑
k=1

1

k2s−1

1
(1 + α/k)s(1 + β/k)s =

∞∑
k=1

1

k2s−1

(
1 − s log(1 + α/k)(1 + β/k)

+
s2

2

[
log(1 + α/k)(1 + β/k)

]2
− s3 R(3)

k (α, β, s)

)
=

∞∑
k=1

1

k2s−1 − s
∞∑

k=1

1

k2s−1

(
log(1 + α/k)(1 + β/k) − α/k + α2/2k2

− β/k + β2/2k2
)

− s
∞∑

k=1

1

k2s−1

(
α/k − α2/2k2

+ β/k − β2/2k2
)
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+
s2

2!

∞∑
k=1

1

k2s−1

([
log(1 + α/k)(1 + β/k)

]2
−

(
α + β

k

)2
)

+
s2

2!
(α + β)2

∞∑
k=1

1

k2s+1 − s3
∞∑

k=1

1

k2s−1 R(3)
k (α, β, s).

By noting that

• log(1 + α/k) − α/k + α2/2k2
= O(α3/k3),

•
[
log(1 + α/k)

]2
− (α/k)2

= O(α3/k3)

for k → ∞ together with an estimate on R(3)
k similar to (B.1) one obtains for the derivative of K(1,α,β)(s) at s = 0:

dK(1,α,β)(s)

ds |s=0
= 2ζ ′(−1) − (α + β) (sζ(2s))′

|s=0 +
α2

+ β2

2
(sζ(2s + 1))′

|s=0

+
(α + β)2

2

(
s2ζ(2s + 1)

)′

|s=0
−

∞∑
k=1

k

(
log(1 + α/k)(1 + β/k) −

α + β

k
+

α2
+ β2

2k2

)
= 2ζ ′(−1) +

α + β

2
+ C

α2
+ β2

2
+

(α + β)2

4

−

∞∑
k=1

k

(
log(1 + α/k)(1 + β/k) −

α + β

k
+

α2
+ β2

2k2

)
.

Recall, that the Barne G-function G(z + 1) [=the double 0-function 02(z)] is defined by:

G(z + 1) = (2π)z/2e−z(z+1)/2−Cz2/2
∞∏

k=1

[(
1 +

z

k

)k
e−z+z2/2k

]
. (B.2)

After applying logarithms to both sides of (B.2) one obtains:

∞∑
k=1

k

(
log(1 + α/k) −

α

k
+

α2

2k2

)
= log G(α + 1) −

α

2
· log 2π +

α(α + 1)

2
+ C

α2

2
.

Now,

H ′
α,β(−1, 0) = αΦ′

(0,α,β)(0) − α2 log αβ + K ′

(1,α,β)(0)

= α log
0(α)0(β)

2π
+ 2ζ ′(−1) +

α + β

2
log 2π −

(
α − β

2

)2

− log G(α + 1)G(β + 1).

By evaluating this expression for α = β [or comparison with Example 3.3, (ii)] we have:

Proposition B.1. For α > 0:

ζ ′ (−1, α) − ζ ′(−1) = log
0(α)α

G(α + 1)
= log

0(α)α+1

G(α)
.

Proof. In the second equality we have used G(α + 1) = G(α)/0(α). �
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